
CHECKSUM
TECHNICHAL CAPABILITY SHEET



Outcome & Value
Atlas’ checksum capabilities sustain a high level of data integrity. Though highly unlikely, data could 
be corrupted during transmission through the I/O pipeline, or it could succumb to bit rot over time 
(depending on operating conditions). Bit rot is a result of some form of deterioration of the information 
stored on physical media, such as HDDs. This typically occurs over time, not through a catastrophic 
failure of the entire disk. By fully checksumming all data that enters our file system’s I/O pipeline (ZIO 
pipeline), when written to or read from disk, Atlas is able to track data integrity levels and immediately 
launch remediation efforts upon a detected mismatch. 

How It Works
Atlas uses the Fletcher algorithm to compute checksums in order to verify the integrity of data 
written to disk, read from disk, and/or transmitted across a network through an I/O pipeline. While 
other checksum algorithms are available as custom settings, the Fletcher algorithm is the default 
and recommended method because the Fletcher computation method provides greatly improved 

performance, especially with general-purpose processors. 

When data enters the ZIO pipeline whether from SMB, NFS, or even the internal operating system, 
Atlas immediately performs a checksum operation to calculate a hash value. The same checksum 
process occurs when writing data to disk. For each transactional group being stored, Atlas calculates 

a checksum that accompanies both the group ID and data payload. When data is then read from disk, 
Atlas again creates a checksum that it compares to the previously calculated checksum value. If the 
two checksums do not perfectly match, we can assume a data integrity error. 

OpenDrives uses the phrase “fully checksummed” to indicate instances when Atlas calculates a 
checksum for information already checksummed, thereby indicating recursive layers of data integrity 
preservation. Essentially, everything associated with data that’s written to storage media, including 
checksums and parity bits, then has its own checksum value calculated within a tree-like structure. 
“Fully checksumming,” therefore, describes our process of using a secondary checksummed roll-up of 
all checksums, across all data, to enhance data integrity. 

Checksums are spread across volumes, much like the data itself, to to avoid writing both data payloads 
and corresponding checksums to the same physical disk. Data and checksums transact in parallel 
from different disks, rather than serially from a single disk, to drive latency reduction. 

Automated data correction occurs on read operations only. Atlas reconstitutes data to match the 
calculated data checksum from either the parity bits (of which two exist for each written transaction) 
or from a recursive process if the parity option is not available or functional. In the latter case, we 
perform an automated bi-weekly scrub to verify and then roll up all checksums from disk to the file 
system. 

Capability Definition
To ensure data integrity, Atlas uses a robust system of checksums to detect data corruption. A checksum value is derived by analyzing a 
larger block of data and creating a unique value based on the contents (also called a hash value). Between the time the data is written 
and when it is accessed, the value should not change. Atlas compares checksums created when data is written to checksums created 
when accessed to make sure they match exactly. Any difference in checksum values indicates data has somehow been corrupted — 
usually either through a data transfer error or bit-rot degradation of the data on disk. In the event we detect a data integrity error, Atlas 
will automatically initiate a recovery process to regain the uncorrupted data. 

Note: Many different algorithms are available within Atlas for calculating checksums. The default setting is using the Fletcher-4 
algorithm, a lightweight approach to error detection that does not require a level of resources that would affect storage performance. 

2 | opendrives.com



Characteristics

The checksum capability has the following characteristics: 

•  Ensures a high level of data integrity for data traversing the ZIO 
pipeline on write and read. 

•  Initiates in-flight data recovery when a checksum mismatch 
occurs at the moment data is being accessed. 

•  Leverages a default Fletcher algorithm, which creates a high level 
of data integrity without the potentially significant performance 
issues that could arise with other algorithms like SHA-256. 

•  Allows for different protection levels on the physical disks that 
make up the file system (e.g. double parity means multiple drives 
can fail across multiple chassis without risk of data loss).

•  Automated scrubs occur every other week to verify and roll up 
all checksums. 

•  Atlas also checksums the checksum values and parity bits for 
multiple layers of redundancy. 

The following diagram illustrates the basic process of creating checksum values for data transactions that can then be 
compared for data integrity—data errors can be assumed when the checksum of data upon write and then read are not 
precisely the same: 

To ensure data integrity further, Atlas creates a tree structure in which checksums themselves are checksummed, what is 

called a merkle tree allowing for very rapid validation of data integrity across large quantities of data. The following diagram 

illustrates a simplified version of this tree structure in which multiple recursive checksums are calculated along the entirety 

of the tree branch: 

Further Reading
Checksum and snapshots capabilities are closely 
related. Please refer to the Snapshot Capability 
Sheet which explains in more detail the mechanics 
behind the way in which Atlas Core creates system 
snapshots for data integrity and recovery.

sales@opendrives.com | +1 888-778-54913 | opendrives.com

The 

quick

brown 

fox... 9854

fc189
7e26

5ae…

Write Transaction
Writes data & checksum to disk Data string 

entering I/O 
pipeline

Checksum
function

Checksum
output of

hash function

Read Transaction
Reads data & checksum from disk Checksum

function
Checksum does 
not match hash 

calculated on write
Initiate Error

Correction process

File A

File B

File C

File A
checksum

Uberblock
checksum

File B
checksum

File C
checksum

Dir 1

Dir 2

Dir 1
checksum

Dir 2
checksum

Uberblock


