
CACHING
TECHNICHAL CAPABILITY SHEET

Outcome & Value
Atlas’ caching (also referred to as ‘inline caching’ or ‘intelligent caching’) enhances performance and

responsiveness by retrieving data more quickly from faster cache layers. At all times, Atlas is also using

intelligent algorithms to analyze usage patterns and anticipate data requests before they are made. Working

in tandem, these capabilities significantly speed up workflows and data requests, as well as drive a much

better experience for end users. Atlas minimizes or eliminates the sluggishness users feel accessing data.

Faster performance and quicker workflow execution equates to higher user adoption – a direct impact to

your organization’s productivity and bottom line.

How It Works
Atlas creates layers of cache, potentially several contingent on the type of memory and storage media available

in the system. All OpenDrives storage systems have RAM memory that acts as the top layer of read cache,

known as Adaptive Replacement Cache (ARC). Atlas takes advantage of as much RAM capacity as is available

to maximize requested data in the ARC, more memory equaling higher performance gains across more users.

Keep in mind that RAM memory provides the best performance (on the order of nanoseconds), so reads from

ARC are incredibly fast and contribute most to smooth execution of data reads. Of course, Atlas uses RAM

memory for other processes as well, and RAM is a finite, valuable resource. Therefore, Atlas enacts intelligent

assessment of the data which is placed into ARC and how long it remains there. To illustrate, data that is being

accessed by multiple team members or at a greater frequency will stay pinned into cache, as opposed to

“cooler” data that will be removed to make space for new requests.

NVMe storage provides the next layer of read cache, known as L2ARC. While not quite as fast as RAM, NVMe
storage operates in the microsecond range, which is still significantly faster than spinning disks. L2ARC serves
as a type of overflow for the top level RAM-based ARC cache. However, because of intelligent logic built into
Atlas, it can also prefetch a large amount of information from the storage pools, depending on the amount of
space allocated to the L2ARC. Using intelligent algorithms, Atlas uses usage patterns to determine data it can
prefetch, before being explicitly requested, and stage in L2ARC, anticipating data the user will require next in
order to make it available from a faster layer instead of waiting to read it from slower storage.

To make this determination, Atlas must distinguish between different types of data because all data simply
isn’t equal in terms of immediate usability, by the user or application, and a subsequent uplift in performance.
Data that is Most Frequently Used (MFU) has a much higher probability of being requested than data that
has been Most Recently Used (MRU). Therefore, Atlas gives a higher priority to MFU data than to MRU data.
Likewise, data that’s all been written at approximately the same time has a higher probability of being
requested if a portion has already been read.

The treatment of these different types of data and built-in intelligence to fetch and optimally place data into
ARC or L2ARC comprise the real value of Atlas’ caching capability, but there’s more. Filling these two layers
of cache is just half of the process; determining which data then needs to be evicted to make way for higher-
priority information efficiently is equally critical. Atlas performs eviction determination even before the actual
data needs to be deprecated (from ARC to L2ARC) or removed from cache entirely. Data deprecated from
ARC may still exist in L2ARC until the intelligent logic determines that higher-priority MFU or MRU data needs
to replace it. All of this is completely automatic and transparent to the user. The user simply feels the effect
through better performance, system responsiveness, and the elimination of lag on data request.

Capability Definition
Caching is the process of leveraging both RAM memory (which is incredibly fast) and NVMe storage (also fast, but not like RAM) to write user requested data.
Providing data to end users and applications from cache, rather than accessing storage media like HDDs, is many times faster. Atlas leverages ZFS’ file and
volume manager capabilities to oversee the different layers of cache memory, determine what needs to be written to each layer, and which data should remain
(or be “pinned”). Atlast runs smart logic to determine what type of data from disk needs to be cached, in which layer of cache the information should be stored,
and how long it should remain in cache based on the capacity of cache space at any given time.

Note: Caching is not the same for every OpenDrives storage system. The Ultimate series, for example, already uses NVMe as general data storage media, and so it
only uses flash memory for its cache. Therefore, be cognizant of the fact that caching will behave slightly differently — and with different results — depending on
the series and configuration of the OpenDrives storage system in question.

2 | opendrives.com

Note: Prefetch is a type of data caching and retrieval based on the same
concept of staging information in cache before it is requested by a user
or application. Intelligent caching is the mechanism of managing data
added to, held in, and evicted from cache layers. In contrast, prefetching

is based on specific data requests — especially in linear streams — and
caching, then reading additional data prior to the actual request.

Characteristics

The caching capability has the following characteristics:

• Multiple layers of cache (ARC, L2ARC) depending on the system
configuration. Similarly, Atlas systems with L2ARC have more ways to
tune caching operations.

• Intelligent operation that distinguishes between different types of
data (MFU, MRU) and manages the location, deprecation, and ultimate
eviction of data

• Persistent caching means that Atlas has a much better understanding
of MFU and MRU data — upon reboot or failure, it accesses transaction
logs to try to restore as much in cache as possible

• L2ARC provides the prefetching capability, and if considerable free
space is available the system will use intelligent logic to prefetch based
on current data use or MFU/MRU determinations

• Media with high frame rates really benefits from our caching and
prefetching capabilities

• Cache often maintains multiple copies of data, both in ARC and L2ARC,
until delisting/deprecation from ARC occurs. All of these operations are
maintained by Atlas via a master cache file.

• To see caching at work, play some media for a given duration and then
stop. You can see in the Atlas Dashboard the bandwidth continues
to increase, which indicates a freshly booted system attempting to
continue to cache MFU data.

The following diagram illustrates the caching layers and deprecation/eviction processes. The diagram displays both
ARC and L2ARC cache, the storage media, and movement of data between these layers.

Further Reading
As previously stated, caching drives the prefetch operation. For more information about prefetching,
please refer to the Prefetch Capability Sheet which explains in more detail the mechanics behind ZFS’
prefetch capabilities which we’ve implemented within Atlas Core.

sales@opendrives.com | +1 888-778-54913 | opendrives.com

RAM

NVMe

HDD

ARC Cache MFU
most frequently used

1001
0110

1001
0110

1001
0110

MRU
most recently used

Data at rest

L2ARC Cache

Storage Media

